Biosignal Processing and Classification Using Computational Learning and Intelligence

Produk Detail:
  • Author : Alejandro Antonio Torres Garcia
  • Publisher : Academic Press
  • Pages : 432 pages
  • ISBN : 9780128201251
  • Rating : /5 from reviews
CLICK HERE TO GET THIS BOOK >>>Biosignal Processing and Classification Using Computational Learning and Intelligence

Download or Read online Biosignal Processing and Classification Using Computational Learning and Intelligence full in PDF, ePub and kindle. this book written by Alejandro Antonio Torres Garcia and published by Academic Press which was released on 15 October 2021 with total page 432 pages. We cannot guarantee that Biosignal Processing and Classification Using Computational Learning and Intelligence book is available in the library, click Get Book button and read full online book in your kindle, tablet, IPAD, PC or mobile whenever and wherever You Like. Biosignal Processing and Classification Using Computational Learning and Intelligence: Principles, Algorithms and Applications posits an approach for biosignal processing and classification using computational learning and intelligence, highlighting that the term biosignal refers to all kinds of signals that can be continuously measured and monitored in living beings. The book is composed of four relevant parts. Part One is an introduction to biosignals and their processing. Part Two presents the fundamentals of computational learning (machine learning). Then, the main techniques of computational intelligence are described along with the hybrid systems, which are the resulting combinations of these techniques. The authors focus primarily on the explanation of the most used methods in the last part of this book, which is the most extensive portion of the book. This part consists of a recapitulation of the newest applications in which these techniques have been successfully applied to the biosignals' domain, including EEG-based Brain-Computer Interfaces (BCI), emotion recognition from voice, leukemia recognition, infant cry recognition, epilepsy diagnosis from EEG, and automatic smell recognition. Provides coverage of the fundamentals of signal processing, including sensing the heart, sending the brain, sensing human acoustic, and sensing other organs Includes coverage biosignal pre-processing techniques such as filtering, artifiact removal, and feature extraction techniques such as Fourier transform, wavelet transform, and MFCC Covers the latest techniques in machine learning and computational intelligence, including Supervised Learning, common classifiers, feature selection, dimensionality reduction, fuzzy logic, neural networks, Deep Learning, bio-inspired algorithms, and Hybrid Systems Written by engineers to help engineers, computer scientists, researchers, and clinicians understand the technology and applications of computational learning to biosignal processing

Biosignal Processing and Classification Using Computational Learning and Intelligence

Biosignal Processing and Classification Using Computational Learning and Intelligence
  • Author : Alejandro Antonio Torres Garcia,Carlos Alberto Reyes Garcia,Luis Villasenor-Pineda,Omar Mendoza Montoya
  • Publisher : Academic Press
  • Release : 15 October 2021
GET THIS BOOK Biosignal Processing and Classification Using Computational Learning and Intelligence

Biosignal Processing and Classification Using Computational Learning and Intelligence: Principles, Algorithms and Applications posits an approach for biosignal processing and classification using computational learning and intelligence, highlighting that the term biosignal refers to all kinds of signals that can be continuously measured and monitored in living beings. The book is composed of four relevant parts. Part One is an introduction to biosignals and their processing. Part Two presents the fundamentals of computational learning (machine learning). Then, the main techniques of

Machine Learning in Bio Signal Analysis and Diagnostic Imaging

Machine Learning in Bio Signal Analysis and Diagnostic Imaging
  • Author : Nilanjan Dey,Surekha Borra,Amira S. Ashour,Fuqian Shi
  • Publisher : Academic Press
  • Release : 30 November 2018
GET THIS BOOK Machine Learning in Bio Signal Analysis and Diagnostic Imaging

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as

Machine Intelligence and Signal Processing

Machine Intelligence and Signal Processing
  • Author : Sonali Agarwal,Shekhar Verma,Dharma P. Agrawal
  • Publisher : Springer Nature
  • Release : 25 February 2020
GET THIS BOOK Machine Intelligence and Signal Processing

This book features selected high-quality research papers presented at the International Conference on Machine Intelligence and Signal Processing (MISP 2019), held at the Indian Institute of Technology, Allahabad, India, on September 7–10, 2019. The book covers the latest advances in the fields of machine learning, big data analytics, signal processing, computational learning theory, and their real-time applications. The topics covered include support vector machines (SVM) and variants like least-squares SVM (LS-SVM) and twin SVM (TWSVM), extreme learning machine (ELM), artificial neural network (ANN),

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques
  • Author : Abdulhamit Subasi
  • Publisher : Academic Press
  • Release : 16 March 2019
GET THIS BOOK Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques,

Classification and Clustering in Biomedical Signal Processing

Classification and Clustering in Biomedical Signal Processing
  • Author : Dey, Nilanjan
  • Publisher : IGI Global
  • Release : 07 April 2016
GET THIS BOOK Classification and Clustering in Biomedical Signal Processing

Advanced techniques in image processing have led to many innovations supporting the medical field, especially in the area of disease diagnosis. Biomedical imaging is an essential part of early disease detection and often considered a first step in the proper management of medical pathological conditions. Classification and Clustering in Biomedical Signal Processing focuses on existing and proposed methods for medical imaging, signal processing, and analysis for the purposes of diagnosing and monitoring patient conditions. Featuring the most recent empirical research

Introduction to Computational Health Informatics

Introduction to Computational Health Informatics
  • Author : Arvind Kumar Bansal,Javed Iqbal Khan,S. Kaisar Alam
  • Publisher : CRC Press
  • Release : 08 January 2020
GET THIS BOOK Introduction to Computational Health Informatics

This class-tested textbook is designed for a semester-long graduate or senior undergraduate course on Computational Health Informatics. The focus of the book is on computational techniques that are widely used in health data analysis and health informatics and it integrates computer science and clinical perspectives. This book prepares computer science students for careers in computational health informatics and medical data analysis. Features Integrates computer science and clinical perspectives Describes various statistical and artificial intelligence techniques, including machine learning techniques such

Machine Intelligence and Signal Analysis

Machine Intelligence and Signal Analysis
  • Author : M. Tanveer,Ram Bilas Pachori
  • Publisher : Springer
  • Release : 07 August 2018
GET THIS BOOK Machine Intelligence and Signal Analysis

The book covers the most recent developments in machine learning, signal analysis, and their applications. It covers the topics of machine intelligence such as: deep learning, soft computing approaches, support vector machines (SVMs), least square SVMs (LSSVMs) and their variants; and covers the topics of signal analysis such as: biomedical signals including electroencephalogram (EEG), magnetoencephalography (MEG), electrocardiogram (ECG) and electromyogram (EMG) as well as other signals such as speech signals, communication signals, vibration signals, image, and video. Further, it analyzes

Practical Machine Learning for Data Analysis Using Python

Practical Machine Learning for Data Analysis Using Python
  • Author : Abdulhamit Subasi
  • Publisher : Academic Press
  • Release : 05 June 2020
GET THIS BOOK Practical Machine Learning for Data Analysis Using Python

Practical Machine Learning for Data Analysis Using Python is a problem solver’s guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation

Bio inspired Neurocomputing

Bio inspired Neurocomputing
  • Author : Akash Kumar Bhoi,Pradeep Kumar Mallick,Chuan-Ming Liu,Valentina E. Balas
  • Publisher : Springer Nature
  • Release : 21 July 2020
GET THIS BOOK Bio inspired Neurocomputing

This book covers the latest technological advances in neuro-computational intelligence in biological processes where the primary focus is on biologically inspired neuro-computational techniques. The theoretical and practical aspects of biomedical neural computing, brain-inspired computing, bio-computational models, artificial intelligence (AI) and machine learning (ML) approaches in biomedical data analytics are covered along with their qualitative and quantitative features. The contents cover numerous computational applications, methodologies and emerging challenges in the field of bio-soft computing and bio-signal processing. The authors have taken

Biomedical Signal Processing and Artificial Intelligence in Healthcare

Biomedical Signal Processing and Artificial Intelligence in Healthcare
  • Author : Walid A. Zgallai
  • Publisher : Academic Press
  • Release : 29 July 2020
GET THIS BOOK Biomedical Signal Processing and Artificial Intelligence in Healthcare

Biomedical Signal Processing and Artificial Intelligence in Healthcare is a new volume in the Developments in Biomedical Engineering and Bioelectronics series. This volume covers the basics of biomedical signal processing and artificial intelligence. It explains the role of machine learning in relation to processing biomedical signals and the applications in medicine and healthcare. The book provides background to statistical analysis in biomedical systems. Several types of biomedical signals are introduced and analyzed, including ECG and EEG signals. The role of

Handbook of Research on Machine Learning Applications and Trends Algorithms Methods and Techniques

Handbook of Research on Machine Learning Applications and Trends  Algorithms  Methods  and Techniques
  • Author : Olivas, Emilio Soria,Guerrero, Jos‚ David Mart¡n,Martinez-Sober, Marcelino,Magdalena-Benedito, Jose Rafael,Serrano L¢pez, Antonio Jos‚
  • Publisher : IGI Global
  • Release : 31 August 2009
GET THIS BOOK Handbook of Research on Machine Learning Applications and Trends Algorithms Methods and Techniques

"This book investiges machine learning (ML), one of the most fruitful fields of current research, both in the proposal of new techniques and theoretic algorithms and in their application to real-life problems"--Provided by publisher.

Machine Intelligence and Signal Processing

Machine Intelligence and Signal Processing
  • Author : Richa Singh,Mayank Vatsa,Angshul Majumdar,Ajay Kumar
  • Publisher : Springer
  • Release : 01 October 2015
GET THIS BOOK Machine Intelligence and Signal Processing

This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal

Pattern Recognition and Machine Intelligence

Pattern Recognition and Machine Intelligence
  • Author : Bhabesh Deka,Pradipta Maji,Sushmita Mitra,Dhruba Kumar Bhattacharyya,Prabin Kumar Bora,Sankar Kumar Pal
  • Publisher : Springer Nature
  • Release : 09 January 2020
GET THIS BOOK Pattern Recognition and Machine Intelligence

The two-volume set of LNCS 11941 and 11942 constitutes the refereed proceedings of the 8th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2019, held in Tezpur, India, in December 2019. The 131 revised full papers presented were carefully reviewed and selected from 341 submissions. They are organized in topical sections named: Pattern Recognition; Machine Learning; Deep Learning; Soft and Evolutionary Computing; Image Processing; Medical Image Processing; Bioinformatics and Biomedical Signal Processing; Information Retrieval; Remote Sensing; Signal and Video Processing; and Smart and Intelligent Sensors.

Proceedings of International Joint Conference on Computational Intelligence

Proceedings of International Joint Conference on Computational Intelligence
  • Author : Mohammad Shorif Uddin,Jagdish Chand Bansal
  • Publisher : Springer
  • Release : 03 July 2019
GET THIS BOOK Proceedings of International Joint Conference on Computational Intelligence

This book gathers outstanding research papers presented at the International Joint Conference on Computational Intelligence (IJCCI 2018), which was held at Daffodil International University on 14–15 December 2018. The topics covered include: collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal and natural language processing.

ECG Signal Processing Classification and Interpretation

ECG Signal Processing  Classification and Interpretation
  • Author : Adam Gacek,Witold Pedrycz
  • Publisher : Springer Science & Business Media
  • Release : 18 September 2011
GET THIS BOOK ECG Signal Processing Classification and Interpretation

The book shows how the various paradigms of computational intelligence, employed either singly or in combination, can produce an effective structure for obtaining often vital information from ECG signals. The text is self-contained, addressing concepts, methodology, algorithms, and case studies and applications, providing the reader with the necessary background augmented with step-by-step explanation of the more advanced concepts. It is structured in three parts: Part I covers the fundamental ideas of computational intelligence together with the relevant principles of data